

Department of Electrical and Electronics Engineering

EE8451-Linear Integrated Circuits & Applications Unit III - MCQ Bank

- **1.** Strain gage is an example of which device?
 - A) Transducer
 - B) Voltage Follower
 - C) Integrator
 - D) Differentiator
 - Answer: (A)
- 2. In an instrumentation amplifier using transducer bridge, which device measure the change in physical energy
 - A) Resistive Transducer
 - B) Indicating Meter
 - C) Capacitive Transducer
 - D) Inductor Circuit
 - Answer: (A)
- **3.** General purpose op-amps are used in applications as
 - A) Instrumentation Amplifier
 - **B)** Differential Instrumentation Amplifier
 - C) Inverting Instrumentation Amplifier
 - D) Non-inverting instrumentation amplifier
 - Answer: (B)
- **4.** 4. Consider a thermistor having the following specifications: $R_F=150k\Omega$ at a reference temperature of 35°C and temperature coefficient of resistance = 25°C. Determine the change in resistance at

100°C.

- A) $-1.625M\Omega$
- B) $9.75M\Omega$
- C) $4.78M\Omega$
- D) None of the mentioned

Answer: (A)

- 5. Express the equation for transducer bridge, if all the resistor values are equal
 - A) $v=-(\Delta r \times v_{dc})/(2 \times r + \Delta r)$
 - B) $v=-(\Delta r \times v_{dc})/2 \times (r+\Delta r)$
 - C) v=- $v_{dc}/[2\times(2\times r+\Delta r)]$.
 - D) $v=-(\Delta R \times V_{dc})/[2\times(2\times R + \Delta R)]$.

Answer: (D)

- **6.** Which material is used for photoconductive cells?
 - A) Germanium
 - B) Cadmium Sulphide
 - C) Lithium
 - D) Phosphorous

Answer: (B)

- 7. How a differential instrumentation amplifier using transducer bridge can be used as a temperature controller?
 - A) Increase Room Temperature
 - B) Replaces Calibrated Meter With Relay
 - C) Change The Bridge Resistance
 - D) Replace Thermistor By Light Intensity Meter

Answer: (B)

8. Which of the following functions does the antilog computation required to perform continuously with log-amps?

- A) In(X)
- B) Log(X)
- C) Sinh(X)
- D) All of the mentioned

Answer: (D)

9. 9Find the output voltage of the log-amplifier

A)
$$V_o = -(Kt) \times Ln(V_i/V_{ref})$$

B)
$$V_o = -(Kt/Q) \times Ln(V_i/V_{ref})$$

C)
$$V_o = -(Kt/Q) \times Ln(V_{ref}/V_i)$$

D)
$$V_o = (kT/q) \times ln(V_i/V_{ref})$$

Answer: (B)

- 10. The input voltage, 6v and reference voltage, 4 v are applied to a log-amp with saturation current and temperature compensation. Find the output voltage of the log-amp?
 - A) 6.314(Kt/Q)V
 - B) 0.597(Kt/Q)V
 - C) 0.405(Kt/Q)V
 - D) 1.214(kT/q)v

Answer: (C)

11. Determine the output voltage for the given circuit

A)
$$V_o = V_{ref} / (10^{-K'v})$$

B)
$$V_o = V_{ref} + (10^{-K'v})$$

C)
$$V_o = V_{ref} \times (10^{-K'v})$$

D)
$$V_o = V_{ref} - (10^{-k'v})$$

Answer: (C)

12. Determine output voltage of analog multiplier provided with two input signal V_x and V_y .

A)
$$V_o = (V_x \times V_x) / V_y$$

B)
$$V_o = (V_x \times V_y / V_{ref})$$

C)
$$V_o = (V_y \times V_y) / V_x$$

D)
$$V_o = (V_x \times V_y) / V_{ref}^2$$

Answer: (B)

13. An input of Vsinot is applied to an ideal frequency doubler. Compute its output voltage?

A)
$$V_o = [(V_x \times V_y) / V_{ref}^2] \times [1 - \cos 2\omega t / 2].$$

B)
$$V_o = [(V_x^2 \times V_y^2) / V_{ref}] \times [1 - \cos 2\omega t / 2].$$

C)
$$V_o = [(V_x \times V_y)^2 / V_{ref}] \times [1 - \cos 2\omega t / 2].$$

D)
$$V_o = [(V_x \times V_y) / (V_{ref}] \times [1-\cos 2\omega t/2]$$
.

Answer: (D)

14. 14. Find the output voltage for the squarer circuit given below, choose input frequency as 10kHz and $V_{ref} = 10v$

A)
$$V_0 = 5.0 - (5.0 \times \cos 4\pi \times 10^4 t)$$

B)
$$V_o = 2.75 - (2.75 \times \cos 4\pi \times 10^4 t)$$

C)
$$V_0 = 1.25 - (1.25 \times \cos 4\pi \times 10^4 t)$$

D) None of the mentioned

Answer: (C)

- 15. Express the output voltage equation of divider circuit
 - A) $V_o = -(V_{ref}/2) \times (V_z/V_x)$
 - B) $V_o = -(2 \times V_{ref}) \times (V_z/V_x)$
 - C) $V_0 = -(V_{ref}) \times (V_z/V_x)$
 - D) $V_o = -V_{ref}^2 \times (V_z/V_x)$

Answer: (C)

16. Find the input current for the circuit given below.

- A) $I_Z = 0.5372 \text{mA}$
- B) $I_Z = 1.581 mA$
- C) $I_Z = 2.436 \text{mA}$
- D) $I_Z = 9.347 \text{mA}$

Answer: (B)

- 17. Which circuit allows to double the frequency?
 - A) Frequency doubler
 - B) Square doubler
 - C) Double multiplier
 - D) All of the mentioned

Answer: (A)

- 18. Find the voltage range at which the multiplier can be used as a squarer circuit?
 - A) $0 V_{in}$
 - $B)\;V_{ref}-V_{in}$

- C) $0 V_{ref}$
- D) All of the mentioned

Answer: (C)

- 19. Which circuit can be used to take square root of a signal?
 - A) Divider circuit
 - B) Multiplier circuit
 - C) Squarer circuit
 - D) None of the mentioned

Answer: (A)

- 20. A square root circuit build from multiplier is given an input voltage of 11.5v. Find its corresponding output voltage?
 - A) 11v
 - B) 15v
 - C) 13v
 - D) Cannot be determined

Answer: (D)

- 21. In a first order high pass filter, frequencies higher than low cut-off frequencies are called
 - A) Stop band frequency
 - B) Pass band frequency
 - C) Centre band frequency
 - D) None of the mentioned

Answer: (B)

- 22. Determine the expression for output voltage of first order high pass filter?
 - A) $V_0 = [1 + (R_F/R_1)] \times [(j2\pi fRC/(1+j2\pi fRC)] \times V_{in}$
 - B) $V_O = [-(R_F/R_1)] \times [(j2\pi fRC/(1+j2\pi fRC)] \times V_{in}$
 - C) $V_O = \{[1+(R_F/R_1)] \times /[1+j2\pi fRC] \} \times V_{in}$
 - D) None of the mentioned

Answer: (A)

- 23. The internal resistor of the second order high pass filter is equal to $10k\Omega$. Find the value of feedback resistor?
 - A) $6.9K\Omega$
 - B) 5.86KΩ
 - C) $10K\Omega$
 - D) 12.56kΩ

Answer: (B)

- 24. Determine the expression for time period of a square wave generator
 - A) $T= 2RC \ln ((R_1 + R_2) / (R_2))$.
 - B) $T = 2RC \ln ((2R_1 + R_2) / (R_2))$.
 - C) $T = 2RC \ln ((R_1 + 2R_2) / (R_2))$.
 - D) $T = 2RC \ln ((R_1 + R_2) / (2 R_2))$.

Answer: (B)

- 25. What will be the frequency of output waveform of a square wave generator if $R_2 = 1.16 R_1$?
 - A) $f_0 = (1/2RC)$
 - $\mathbf{B)}\ \mathbf{f_o} = (\mathbf{ln/2RC})$
 - C) $f_0 = (\ln /2 \times \sqrt{RC})$
 - D) $f_0 = (\ln/\sqrt{(2 \text{ RC})})^{-1}$

Answer: (B)